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A note on measuring inequality and welfare for ordinal data

Martyna Kobus∗†, Radosław Kurek

Abstract

Many countries (e.g. UK, France, Japan, Canada) and international institutions have re-

cently adhered to measuring progress beyond GDP per capita. This, however, often requires

dealing with ordinal data. Therefore inequality measurement theory for ordinal data is being

developed in the last decade, because standard inequality measures cannot be used for ordi-

nal data; the same applies to measuring welfare (Kobus and Milos, 2012). So far researchers

have been focused on developing the dominance criterion proposed by Allison and Foster (2004)

(henceforth AF). Yet this criterion seems to be better suited to measuring polarization, and

not necessarily inequality, as the two notions are different in a cardinal data setting (Esteban

and Ray 1994). Due to limitations of AF approach, welfare measurement, which is related to

inequality measurement, has not been developed yet for ordinal data. This note is our prelimi-

nary work on measuring inequality and welfare for ordinal data. We propose a framework which

can encompass both notions, and within which inequality is different from polarization. In this

note we shed light on how standard concepts and theorems can be redefined in our framework.

Keywords: Inequality measurement; Ordinal data; Majorization; Sub-/super-modular function;

Zeta function; Mobius inversion matrix;

JEL codes: D3; D6

1 Notation and definitions

xT = (p1, p2, ..., pn) such that p1 + p2 + ...+ pn = 1

Definition 1. Classical Majorization

For x, y ∈ Rn
+,

x ≺ y iff

 Σk
i=1x[i] 6 Σk

i=1y[i] k = 1, 2, ..., (n− 1)

Σn
i=1xi = Σn

i=1yi
Where (z[1], z[2], ..., z[n]) = sort ↓ (z) denoted descendingly sorted (nonincreasing) ordering of z =

(z1, z2, ..., zn)
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Definition 2. Generalized Majorization

For x, y ∈ Rn
+,

x � y iff

 Σk
i=1xi 6 Σk

i=1yi k = 1, 2, ..., (n− 1)

Σn
i=1xi = Σn

i=1yi

Definition 3. Vector Majorization

For x, y ∈ Rn
+,

x 6vec y iff xi 6 yi k = 1, 2, ..., (n− 1)

Definition 4. Partial sum matrix (
∫

) is a lower triangular matrix consisting of only 1, i.e.∫
= (ζij) where ζij = 0 if j > i and ζij = 1 elsewhere. For example, when n = 6:

∫
=



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1


Definition 5. Generalized Majorization (equivalent definition)

For x, y ∈ Rn
+,

x � y iff
∫
x 6vec

∫
y and Σn

i=1xi = Σn
i=1yi

Definition 6. Mobius inversion matrix (∂ ) is a lower triangular matrix consisting of 1 on diagonal,

−1 on neighbourhood elements below diagonal and 0 elsewhere, i.e. ∂ = (µij) where µij = 1 if j = i,

µij = −1 if j + 1 = i and µij = 0 elsewhere. For example, when n = 6:

∫
=



1 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


We denote that ∂ =

∫ −1

Definition 7. Lower Triangular Stochastic Matrix (LTSM)

Matrix is column stochastic if its elements are all nonnegative and all columns add up to 1.

LTSM is column stochastic matrix which has only zero elements above diagonal.

Example:
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Definition 8. LTSM Majorization

For x, y ∈ Rn
+,

x �LTSM y iff x = Ly for some LTSM L

2 LTSM and generalized majorization

Theorem 1. LTSM Majorization ⇐⇒ Generalized majorization

Proof:

⇒

Let x �LTSM y, then x = Ly for some LTSM L, then
∫
x =

∫
Ly, which implies

∫
x 6vec

∫
y1 and

we have x � y.

⇐

For the converse we assume x � y and derive an LTSM L such that x = Ly. Let’s assume x 6= y,

otherwise L would be identity matrix. Let’s consider:

Definition 9. Exchange matrix Lpq(ε) which differs from identity only on {p, q} × {p, q}

(
. . . p . . . q . . .

)


. . .

p

. . .

q

. . .





. . .

1− ε
. . .

ε 1

. . .


Now let’s find lowest p, q such that xp 6= yp and xq 6= yq (so we have x1 = y1, ..., xp−1 = yp−1).

There has to exist at least 2 such elements because if their sum is equal, they can’t differ on only 1

position. Recall that we have x � y so xp 6 yp and xp

yp
∈ (0, 1]. We define ε = (1− xp

yp
) ∈ [0, 1). We

have y∗ = Lpq(ε)y = (y1, y2, ..., yp−1, xp, yp+1, ..., yq−1, (yq − yp + xp), yq+1, ..., yn). Since xp 6 yp we

have also x 6vec y
∗ 6vec y (so multiplication by Lpq(ε) preserves majorization) and y∗ agrees with

1x = Ly = (l11y1, l21y1 + l22y2, ..., ln1y1 + ln2y2 + ...+ ln1yn),
∫
x = (l11y1, [l11 + l21]y1 + l22y2, ..., [l11 + l21 + ..+

ln1]y1 +[l22 + l32 + ...+ ln2]y2 + ...+ ln1yn) and we clearly have
∫
x 6vec

∫
y because each of [l1m + l2m + ..+ lkm] 6 1,

because L is columnt stochastic. Additionally we obtain that Σn
i=1xi = [l11 + l21 + .. + ln1]y1 + [l22 + l32 + ... +

ln2]y2 + ... + ln1yn = Σn
i=1yi
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x on one more beggining position than y. We can now apply our algoritm as an induction step and

by at most n exchanges we will obtain x (x = y∗n).

Lemma 1. LTSM form a semigroup.

Proof:

It is clear that identity matrix belongs to LTSM. Now we only need to check that product of 2 LTSM

matrices is again LTSM matrix. Let L and K be LTSM matrices.

We have (LK)ij = li1k1j + li2k2j + ...+ linknj . Now remember that lim = 0 for m > i and kmj = 0

for m < j, so if we want to obtain nonzero entries we need to have j 6 m 6 i. So (LK)ij = 0 for

j > i (LK is lower triangular) and (LK)ij = lijkjj + li(j+1)k(j+1)j + li(i−1)k(i−1)j + liikij for j 6 i.

Let’s check if LK is column stochastic:

Σn
k=1(LK)kj = Σn

x=j(LK)xj = Σn
x=jΣ

x
m=j lxmkmj =2 Σn

m=jkmj(Σ
n
x=mlxm) = Σn

m=jkmj = 1 since

both Σn
m=jkmj and Σn

x=mlxm are equal 1 due to L and K being an LTSM.

We can now say that x = Ly = L(n−1)n(εn−1)...L23(ε2)L12(ε1)y by which we finish our proof.

Corollary 1. Each LTSM can be decomposed into product of at most n− 1 exchange matrices and

this semigroup is generated by exchange matrices.

3 Generalized Majorization of nth order

Definition 10. Generalized Majorization of nth order

For x, y ∈ Rn
+,

x �n y iff
∫ n

x 6vec

∫ n
y and (

∫ n
x)n = (

∫ n
y)n

Now let’s take x∗ =
∫ n−1

x and y∗ =
∫ n−1

y. We obtain
∫
x∗ 6vec

∫
y∗. By Theorem 1 we know

that since x∗ � y∗ there exist LTSM L such that x∗ = Ly∗. So x = ∂n−1L
∫ n−1

y.

Definition 11. Semigroups of nth order related to LTSM

Let’s define Gk = {∂k−1L
∫ k−1 |L ∈ LTSM}

It is clear that Gk forms a semigroup because ∂ =
∫ −1.

Theorem 2. Each Lk ∈ Gk can be decomposed into at most n − 1 matrices related to exchange

matrices.

Proof:
2we regroup terms by k
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Let’s take

Gk 3 Lk = ∂k−1L

∫ k−1

=

= ∂k−1L(n−1)n(εn−1)...L23(ε2)L12(ε1)

∫ k−1

=

= ∂k−1L(n−1)n(εn−1)

∫ k−1

∂k−1...

∫ k−1

∂k−1L23(ε2)

∫ k−1

∂k−1L12(ε1)

∫ k−1

=

= Lk
(n−1)n(εn−1)...Lk

23(ε2)Lk
12(ε1)

4 Properties of exchange matrices under ∂−
∫
transformation

Definition 12. c1(x) = 1

c2(x) = c1(1) + c1(2) + ...c1(x) = x

c3(x) = c2(1) + c2(2) + ...c2(x) = 1 + 2 + ...+ x = 1
2x(x+ 1)

...

ck(x) = ck−1(1) + ck−1(2) + ...+ ck−1(x) = 1
(k−1)!x(x+ 1)(x+ 2)...(x+ k − 2)3

∫ k
=



ck(1) 0 0 0 0 . . . 0

ck(2) ck(1) 0 0 0 . . . 0

ck(3) ck(2) ck(1) 0 0 . . . 0

ck(4) ck(3) ck(2) ck(1) 0 . . . 0

ck(5) ck(4) ck(3) ck(2) ck(1) . . . 0
...

...
...

...
...

. . .
...

ck(n) ck(n− 1) ck(n− 2) ck(n− 3) ck(n− 4) . . . ck(1)


Definition 13. Pascal’s triangle coefficients

t0(x) 1

t1(x) 1 1

t2(x) 1 2 1

t3(x) 1 3 3 1
...

tk(x)
(
k
0

) (
k
1

) (
k
2

) (
k
3

)
. . .
(
k
k

)
So we have tk(x) =

(
k

x−1

)
for 1 6 x 6 k + 1 and tk(x) = 0 for

k + 1 6 x

3Generating function for c1(n) is 1
1−x

, so giving the form of ck(n), its generating function will be ( 1
(1−x)

)k,

so ck(1 + n) = 1
n!

(( 1
(1−x)

)k)(n)(0) = 1
n!

((1 − x)−k)(n)(0) = 1
n!
k(k + 1)(k + 2)...(k + n − 1)((1 − x)−k−n)(0) =

1
n!
k(k + 1)(k + 2)...(k + n− 1) =

(k+n−1)!
n!(k−1)!

= 1
(k−1)!

(n + 1)(n + 2)...(n + k − 1), so it agrees with our formula.

5



∂k =



tk(1) 0 0 0 0 . . . 0

−tk(2) tk(1) 0 0 0 . . . 0

tk(3) −tk(2) tk(1) 0 0 . . . 0

−tk(4) tk(3) −tk(2) tk(1) 0 . . . 0

tk(5) −tk(4) tk(3) −tk(2) tk(1) . . . 0
...

...
...

...
...

. . .
...

(−1)n+1tk(n) (−1)ntk(n− 1) (−1)n−1tk(n− 2) (−1)n−2tk(n− 3) (−1)n−3tk(n− 4) . . . tk(1)


Definition 14. General form of Lpq(ε) matrix under ∂ −

∫
transformation

Lk+1
pq (ε) = ∂kLpq(ε)

∫ k
= Id+

...

p− 1

p

p+ 1

p+ 2

p+ 3
...

n



...

0

−tk(1)

tk(2)

−tk(3)

tk(4)
...

(−1)n−p+1tk(n− p+ 1)



(
ck(p) ck(p− 1) . . . ck(3) ck(2) ck(1) 0 . . . 0

)
ε+

...

q − 1

q

q + 1

q + 2

q + 3
...

n



...

0

tk(1)

−tk(2)

tk(3)

−tk(4)
...

(−1)n−ptk(n− q + 1)



(
ck(p) ck(p− 1) . . . ck(3) ck(2) ck(1) 0 . . . 0

)
ε

Proof:

Let Dpq(ε) = Lpq(ε)− Id, i. e. (Dpq)pp = −ε, (Dpq)qp = ε and (Dpq)ij = 0 elsewhere.

Lk+1
pq (ε) = ∂kLpq(ε)

∫ k
= ∂k(Id + Dpq(ε))

∫ k
= ∂kId

∫ k
+∂kDpq(ε)

∫ k
= Id + ∂kDpq(ε)

∫ k and it

immediatelly follows that Lk+1
pq is of the above form.

5 Examples

Example 1

p = 3, q = 6, n=9
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L36(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1− ε 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 ε 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



L2
36(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

−ε −ε 1− ε 0 0 0 0 0 0

ε ε ε 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

ε ε ε 0 0 1 0 0 0

−ε −ε −ε 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



= Id+



0

0

−1

1

0

0

0

0

0



(
1 1 1 0 0 0 0 0 0

)
ε+



0

0

0

0

0

1

−1

0

0



(
1 1 1 0 0 0 0 0 0

)
ε

L6
36(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

−15ε −5ε 1− ε 0 0 0 0 0 0

75ε 25ε 5ε 1 0 0 0 0 0

−150ε −50ε −10ε 0 1 0 0 0 0

165ε 55ε 11ε 0 0 1 0 0 0

−150ε −50ε −10ε 0 0 0 1 0 0

165ε 55ε 11ε 0 0 0 0 1 0

−150ε −50ε −10ε 0 0 0 0 0 1



= Id+



0

0

−1

5

−10

10

−5

1

0



(
15 5 1 0 0 0 0 0 0

)
ε+
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0

0

0

0

0

1

−5

10

−10



(
15 5 1 0 0 0 0 0 0

)
ε

Example 2

p = 5, q = 7, n=9

L57(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1− ε 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 ε 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



L5
57(ε) = Id+



0

0

0

0

−1

4

−6

4

1



(
35 20 10 4 1 0 0 0 0

)
ε+



0

0

0

0

0

0

1

−4

6



(
35 20 10 4 1 0 0 0 0

)
ε =

8



Id+



0

0

0

0

−1

4

−5

0

−5



(
35 20 10 4 1 0 0 0 0

)
ε = Id+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−35 −20 −10 −4 −1 0 0 0 0

140 80 40 16 4 0 0 0 0

−175 −100 −50 −20 −5 0 0 0 0

0 0 0 0 0 0 0 0 0

−175 −100 −50 −20 −5 0 0 0 0



ε =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

−35ε −20ε −10ε −4ε 1− ε 0 0 0 0

140ε 80ε 40ε 16ε 4ε 1 0 0 0

−175ε −100ε −50ε −20ε −5ε 0 1 0 0

0 0 0 0 0 0 0 1 0

−175ε −100ε −50ε −20ε −5ε 0 0 0 1


Example 3

p = 5, q = 6, n=9

L56(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1− ε 0 0 0 0

0 0 0 0 ε 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



L2
56(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

−ε −ε −ε −ε 1− ε 0 0 0 0

2ε 2ε 2ε 2ε 2ε 1 0 0 0

−ε −ε −ε −ε −ε 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1
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L3
56(ε) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

−5ε −4ε −3ε −2ε 1− ε 0 0 0 0

15ε 12ε 9ε 6ε 3ε 1 0 0 0

−15ε −12ε −9ε −6ε −3ε 0 1 0 0

5ε 4ε 3ε 2ε ε 0 0 1 0

0 0 0 0 0 0 0 0 1
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