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Abstract

Many countries (e.g. UK, France, Japan, Canada) and international institutions have re-
cently adhered to measuring progress beyond GDP per capita. This, however, often requires
dealing with ordinal data. Therefore inequality measurement theory for ordinal data is being
developed in the last decade, because standard inequality measures cannot be used for ordi-
nal data; the same applies to measuring welfare (Kobus and Milos, 2012). So far researchers
have been focused on developing the dominance criterion proposed by Allison and Foster (2004)
(henceforth AF). Yet this criterion seems to be better suited to measuring polarization, and
not necessarily inequality, as the two notions are different in a cardinal data setting (Esteban
and Ray 1994). Due to limitations of AF approach, welfare measurement, which is related to
inequality measurement, has not been developed yet for ordinal data. This note is our prelimi-
nary work on measuring inequality and welfare for ordinal data. We propose a framework which
can encompass both notions, and within which inequality is different from polarization. In this

note we shed light on how standard concepts and theorems can be redefined in our framework.

Keywords: Inequality measurement; Ordinal data; Majorization; Sub-/super-modular function;
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JEL codes: D3; D6

1 Notation and definitions

& = (p1,p2, -, pn) such that py +pa + ... +pp =1

Definition 1. Classical Majorization

For z,y € RY},
Ek,$z<2f, i k:1,2,...,n—1
z <y it i=12[] ~1Y[4) ( )
Ui wi = Ny
Where (2p1), 2j2], -+ 2[n)) = sOrt | (z) denoted descendingly sorted (nonincreasing) ordering of z =

(Z17 227 ey Zn)
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Definition 2. Generalized Majorization
Forz,y e RY,
Yoo <8y k=1,2,..,(n—1)

r =y iff
Yiiwi =31y

Definition 3. Vector Majorization
For z,y € RY,
xg'uecy Zﬁ Zq <y’b k:172a7(n_1)

Definition 4. Partial sum matriz ([ ) is a lower triangular matriz consisting of only 1, i.e.
J = (¢j) where ;=0 if j >4 and (;; = 1 elsewhere. For example, when n = 6:

10 0 0 00
0
1

e e e
[ = T N =
—
e = =)

0 0
0 0
0 0
1 0
11

Definition 5. Generalized Majorization (equivalent definition)
Forz,y € RY,

T =y Zﬁ fl’ Svee fy and 2?:15131' = 2?:1%

Definition 6. Mobius inversion matriz (0 ) is a lower triangular matriz consisting of 1 on diagonal,
—1 on neighbourhood elements below diagonal and 0 elsewhere, i.e. 0 = (u;;) where p;; =1 if j =1,

wi; = —1if j+1=1 and p;; =0 elsewhere. For example, when n = 6:

1 0 0 0 0 O
-1 1 0 0 0 O
= 0o -1 1 0 0 0
0 0 -1 1 0 0
0 0 0o -1 1 0
0 0 0 0 -1 1

We denote that 0 = f_l

Definition 7. Lower Triangular Stochastic Matriz (LTSM)
Matriz is column stochastic if its elements are all nonnegative and all columns add up to 1.
LTSM 1is column stochastic matrixz which has only zero elements above diagonal.

Ezxample:



£ 00 0 00
1 1
L'l 9 0 0 0
1 1 1
L1109 0 0
1 1 1 1

§ 5 12 3 00
1 1 1 1 1
5 5 13 2 0
10101 1 1 4
6 5 4 3 2

Definition 8. LTSM Majorization
For z,y € RY,
T 2LTSM Y iff x = Ly for some LTSM L

2 LTSM and generalized majorization

Theorem 1. LTSM Magjorization <= Generalized majorization

Proof:
=
Let © <prsm Y, then o = Ly for some LTSM L, then [z = [ Ly, which implies [ 2 <, [y' and
we have z < y.
=
For the converse we assume x = y and derive an LTSM L such that x = Ly. Let’s assume x # y,

otherwise L would be identity matrix. Let’s consider:

Definition 9. Exchange matrixz Ly,(c) which differs from identity only on {p,q} x {p, q}

Now let’s find lowest p, ¢ such that z, # y, and x4 # y, (so we have 1 = y1,...,Zp_1 = Yp_1).
There has to exist at least 2 such elements because if their sum is equal, they can’t differ on only 1
position. Recall that we have z < y so z, <y, and f/—p € (0,1]. We define e = (1 — fl—”) €1[0,1). We

Jp Jp

have y* = Lyg(€)y = (Y1, Y25+ YUp—1, Tps Ypt15 s Yg—15 (Yg — Yp + Tp)s Yg1, -+ Yn)- Since x, <y, we

have also & <yee ¥* Svee ¥ (s0 multiplication by Ly, (e) preserves majorization) and y+ agrees with

e = Ly = (li1y1, l21y1 + 1222, ooy In1y1 +n2y2 + .. + ln1yn), J o= (1yr, [y +le1]yr +l22y2, oy [lin +lo1 + ..+
In1lyr +[l22 +Hl32+ ...+ ln2]y2 + ... + ln1yn) and we clearly have f:): <wvee fy because each of [l +l2m + .. +1km] < 1,
because L is columnt stochastic. Additionally we obtain that P  x; = [l11 + l21 + .. + ln1]yr + [l22 + 32 + ... +

ln2]y2 + ...+ lnlyn = Z,?:lyi



x on one more beggining position than y. We can now apply our algoritm as an induction step and

by at most n exchanges we will obtain z (z = y*™).
Lemma 1. LTSM form a semigroup.

Proof:
It is clear that identity matrix belongs to LT'SM. Now we only need to check that product of 2 LTSM
matrices is again LTSM matrix. Let L and K be LTSM matrices.
We have (LK)ij = li1k1j + liokoj + ... + linky;. Now remember that l;,, = 0 for m > i and k,,,; =0
for m < j, so if we want to obtain nonzero entries we need to have j < m < i. So (LK);; = 0 for
J > (LK is lower triangular) and (LK)i; = lijkj; + liG+1)kG+1); + lii—1)ki—1); + liskij for j <.
Let’s check if LK is column stochastic:
Sho (LK) = 80 (LK)yy = X050 _ilembm; =2 S ibmi (X lem) = X5, ;kmj = 1 since
both E%ijmj and X7_ .., are equal 1 due to L and K being an LTSM.
We can now say that © = Ly = L(,—1),(€n—1)...Las(e2) L12(e1)y by which we finish our proof.

Corollary 1. Each LTSM can be decomposed into product of at most n — 1 exchange matrices and

this semigroup s generated by exchange matrices.

3 Generalized Majorization of nth order

Definition 10. Generalized Majorization of nth order

Forz,y e R},
x 3"y iff fnxgvecfny and (fnx)n:(fny)n

Now let’s take z* = fn_l x and y* = f"_l y. We obtain [ 2* <,c. [y*. By Theorem 1 we know
that since 2* < y* there exist LTSM L such that 2* = Ly*. So 2 = 0" 'L f”fl v.

Definition 11. Semigroups of nth order related to LTSM
Let’s define GF = {0*L [*~'|L € LTSM}

It is clear that G* forms a semigroup because 9 = Ik -

Theorem 2. Each L* € G* can be decomposed into at most n — 1 matrices related to exchange

matrices.

Proof:

2we regroup terms by k



Let’s take
k—1
G > L* :a’HL/ =

k-1
= akflL(n—l)n(5n71)"'L23(62)L12(61)/ B

k-1 k-1 k—1 k-1
= ak_lL(nfl)n(Enfl)/ ak_lm/ 6k_1L23(52)/ 8k_1L12(81)/ -

= L](Cn—1)n(57z—1)---L§3(52)LIf2(51)

4 Properties of exchange matrices under J— [ transformation

Definition 12. ¢(z) =1
ca(x) =c1(1) +c1(2) + ...cr(x)
cs(x) = ca(l) + c2(2) + ...c ()

T
1

+2+ . +ax=Ia(z+1)

ck() = cp—1(1) + ck—1(2) + ... + ci1(x) = ﬁx(m + 1) (x+2)...(v+ k—2)3

(1) 0 0 0 0 0
ck(2) ek (1) 0 0 0 0
ck(3) ck(2) ek (1) 0 0 0
=1 ) c(2) e (1) 0 0
ck(5) ck(4) ck(3) ck(2) ck(1) 0
ck(n) exn—1) ex(n—2) cx(n—3) cin—4) ... cx(1)
Definition 13. Pascal’s triangle coefficients
to(x) 1
t1(z) 11
ta(x) 121
ts(x) 1331
tr(x) (]8) (lf) (g) (g) (Z) So we have ti(x) = (aﬁl) forl <x<k+1 and tp(x) =0 for
k+1<z
3Generating function for c1(n) is 12—, so giving the form of cj(n), its generating function will be (ﬁ)k,
so (1 +n) = L((iz)M)™0) = (1 —2)™")M(0) = k(k + Dk + 2)..(k +n — (1 - 2)7*7)(0) =

%k(k +1)(k+2)...(k+n—-1)= (::,"('::11)),' = ﬁ(n +1)(n+2)...(n+ k — 1), so it agrees with our formula.




tr(1) 0 0 0 0
—tk(2) ti(1) 0 0 0
t(3) —tx(2) t(1) 0 0
ok = —ti(4) tr(3) —tx(2) tr(1) 0
tr(5) —ti(4) tx(3) —tk(2) tr(1)

(D)™ te(n)  (=D)"r(n—1) (=1)"He(n—2) (=1)"*te(n—3) (=1)"tx(n—4)

Definition 14. General form of L,,(¢) matriz under 9 — [ transformation

LEF (&) = 0% Lyg(e) [ = Id +

p—1 0

P —tr(1)
p+1 ti(2)
p+2 —t1(3)

p+3 tr(4)

n \(=1)" Pt (n—p+1)

g—1 0

q te(1)
q+1 —tk(2)
q+2 tr(3)
qg+3 —tx(4)

n \(=1)""Plp(n—q+1)

Proof:

() arlp—1) oo @® @@ @) 0 .. 0)e+

(Ck(p) ck(p—1) ... a(3) (2 (1) 0 ... 0)6

Let Dpq(e) = Lypg(e) — Id, i. e. (Dpg)pp = —€, (Dpq)gp = € and (Dpq)i; = 0 elsewhere.
LEF (&) = 0" Lyg() [* = 0% (Id + Do) [* = 0*1d [* +0" Dyg(e) [* = Id + 9* Dpg(e) [* and it

immediatelly follows that L’;;‘l is of the above form.

5 Examples

Example 1
p= 3, q= 6, n=9

o O o o o

tr(1)




L3g(e)

1536(5)

13%6(5)

1 0
0 1
0 01
0 0
0 0
0 0
0 0
0 0
0 0
1 0
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—€ —€
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o O o o o = o o o
- o o o o

oSO O O M

—_
I
™

© ©O O O ©O B O O O ©o o ©o o

(1 110 0 00

—15¢e
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165¢
—150¢
165¢
—150¢e
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1 0
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25¢ oe
—50e  —10e
55¢e 11e
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5d¢e 11e
—50e  —10e

o O O O B O O O O O o o B o o o o o
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Example 2

p=254¢g="7,1n=9

10

0 1

0 0

0 0

Ls7(e) =10 0

0 0

0 0

0 0

0 0

L3.(e) = Id+

o O O O o o = o o
oSO O O o o = o o O

0 0 0
0 0 0
0 0 0
0 0 0
1-¢ 0 O
0 10
€ 0 1
0 0 0
0 0 0
(35 20 10

(1551000000)6

o B O O O o o o o

= O O O o o o o o

0 0 OO>6+

_ o o o o o o

(352010410000)6:



Id+| -1 (35 20 10 4 1 0 0 O 0)6:Id+
4
-5
0
-5
1 0 0 0 0 0 0 00
0 1 0 0 0 0 0 00
0 0 1 0 0 0 0 00
0 0 0 1 0 00 00
—35% —20e —10¢ —4¢ 1—-¢ 0 0 0 O
140e 80e 40e  16¢e 4¢ 1 0 0 O
—175¢ —100e —50e —20e¢ -5 0 1 0 O
0 0 0 0 0 0010
—175%¢ —100e —50e —20e -5 0 0 O 1
Example 3
p=25,q=06,n=9
1000 O O0O0O0OO
0100 O O0O0OOO
0010 0O O0O0O0OO
0 0 01 0 00 00
Lsg(e)=10 0 0 0 1—2 0 0 0 0
000 0 ¢ 1 0 00
0000 O 0100
0000 O O0O0OT10O0
0000 O 0O0TO0OT1
1 0 0 0 0 0 0 00
0 1 0 0 0 0 0 00
o 0 1 0 0 0 0 00
o 0 0 1 0 0 0 00
Li(E)=|-¢ - —¢ - 1—-2 0 0 0 0
2 2 2¢ 2 2 1 0 0 O
- —€¢ —¢ —€ — 01 0 0
0o 0 0 0 0 0010
0o 0 0 0 0 0 0 01

o O O O
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o O O O
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o O O O

—20
0
—20
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1 0 0 0 0 0000

0 1 0 0 0 00 0O

0 0 1 0 0 00 0O

0 0 0 1 0 00 0O

Lige)=| =5 —4c -3z —2¢ 1-2 0 0 0 0
15¢ 12¢ 9e 6e e 1.0 0 O

—15e —12¢ —9¢ —6gs -3¢ 0 1 0 O

oe 4e 3 2 € 0 010

0 0 0 0 0 00 01
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