Anna Wziątek-Kubiak* Marek Pęczkowski** Ewa Balcerowicz***

OCCASIONAL AND PERSISTENT INNOVATORS IN POLAND: AN EMPIRICAL STUDY OF OBSTACLES TO INNOVATION AND THEIR COMPLEMENTARITIES

INTRODUCTION

Innovation is a complex phenomenon, influenced by many interrelated factors. The interrelatedness of these factors can be complementary or substitutable. If factors are complements, they act together and reinforce each other (Dosi, 1988). Removing one will attenuate the other. If factors are substitutes, the presence of one factor relieves the pressure from the other one. Removing one factor will exacerbate the other. Substitutability and complementarity concern both types of factors that determine innovation – conducive to and enhancing innovation (review of literature, Schmiedeberg, 2008) on the one hand, and inhibiting innovation, i.e. obstacles, barriers or impediments to innovation, on the other.

Studies focusing on factors conducive to and enhancing innovation have recognized heterogeneity of firms. This differentiation concerned intensity and types of innovation inputs that innovative firms used, their degree of engagement in innovation activities, innovation patterns, strategy and behaviour (Jensen, et al., 2007; Jong and Marsili, 2006; Llerene, Oltra 2002; Clausen and Verspagen, 2008;

^{*} Instytut Nauk Ekonomicznych PAN.

^{**} Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego.

^{***} Centrum Analiz Społeczno-Ekonomicznych.

Damanpour and Wischnevsky, 2006). Other classifications of innovators (for example pioneers, laggards, imitators, and potential, early and late adopters) have confirmed heterogeneity of innovative firms in many respects.

However, analyses focusing on barriers to innovation have treated all innovative firms as an undifferentiated group (e.g. Daniel and Grimshaw, 2002; Tourigny and Lee, 2004; Baldwin and Lin, 2002; Iammarino et al., 2006). Only a few contributions on barriers to innovation refer to the heterogeneity of innovative (Pihkala et al., 2002; Blanchard et al., 2010) and non-innovative firms (D'Este et al., 2008, 2009) and the distinct factors that affect their assessment of the importance of barriers to innovation. With respect to the New Member States, the existing literature is limited to the first approach (Kramer, 2009), descriptive analyses and case studies (Piech, Radosevic, 2006). To the best of our knowledge, only a few studies (Wziątek-Kubiak, Balcerowicz, Pęczkowski, 2009a, 2009b) have been done on the heterogeneity of innovative firms in the New Member States. No research has been done on the differences in their perceptions of innovation barriers and complementarities between them.

This paper aims to uncover the heterogeneous nature of innovative firms and distinct knowledge sources that affect their perception of barriers. Exploring the barriers approach to innovation and considering the linkages and interrelationship between factors that hinder innovation, we hope to find evidence for complementarities between innovation barriers. This issue is very significant for policy. Changing one policy variable may have little effect if other policy variables remain unchanged. However, if innovation barriers are complementary, removing one barrier will attenuate the other. In effect, there might be less reasons to remove both barriers at the same time.

Based on the frequency of commercialized innovation (innovation output), and exploring the Community Innovation Survey (hence forth CIS) data for two periods: 2002–2004 (CIS4) and 2004–2006 (CIS5), we introduced taxonomy that is based on the frequency of engagement of firms in innovation activities. We focus on the differentiation of innovation barriers between two groups of innovators: the group that innovates continuously (i.e. introduced innovation in both CIS3 and CIS4) and the other that does it on occasion, that is either in the first (CIS4) or second (CIS5) period.

Not only much fewer Polish manufacturing firms than in the European Union incumbent countries innovate, but also little is known about them and characteristics that distinguish different groups of such firms, and whether or not differences among these firms exist in relation to their perception of barriers to innovation. In our understanding, in the New Member States policy should not only stimulate the innovation activities of non-innovating firms, but also strengthen the innovation activities of innovative firms, i.e. consider substitutability and complementarities of barriers to innovation.

Differentiation in innovation activities of firms with respect to differences in sensitivity to perception of innovation barriers is the focus of this paper. Its aim is threefold. Firstly, to distinguish innovating firms that engage in innovation activities continuously from those that do so on occasion. Secondly, we intend to show the influence of characteristics and knowledge sourcing activities on differences in sensitivity to perception of innovation barriers between the two groups of innovative firms. Thirdly, we hope to identify groups of barriers that are complementary, and to present similarities and differences between the two groups of innovators with this respect.

The paper builds on the previous literature (Mohnen and Roller, 2005; Galia and Legros, 2004) and provides an updated and comprehensive overview of barriers faced by innovative manufacturing firms in Poland. It provides an econometric analysis of complementarities between barriers to innovation conditional on characteristics of firms and knowledge sources.

The structure of the paper is as follows. Section 2 reviews the contribution of the literature on the relationship between innovation barriers and firms' characteristics and knowledge sources used. Section 3 presents methodology and data. Section 4 examines differences between the two groups of innovators in terms of their characteristics, innovation activities and frequency of perceived barriers which are important to innovation activities. In the next section we calculate the binary correlations between barriers to select their interrelated groups. The groupings of barriers are confirmed by the Principal Component Analysis. Section 6 provides an econometric analysis of sensitivity to perception of innovation barriers conditional on firms' characteristics and knowledge sources activities and in this respect the differences between the two groups of innovators. Establishing groupings of interrelated barriers, in Section 7 we show complementarities between them. Similarities and differences in terms of complementarities between barriers influencing differences in innovation activities between the two groups of innovators are underlined. The summary and conclusions wrap up the paper.

2. PREVIOUS LITERATURE

Many researchers have studied factors fostering innovation and the relationship between them and firm's performance. Fewer studies have investigated factors inhibiting innovation, their role in innovation, and the extent to which they actually slowed down innovation activities (Leitao et al. 2007), led to the abandonment or premature holding them up, or prevented from beginning an innovative project (Mohnen et al., 2008). So at the firm level, the literature has proceeded along two parallel strands reflecting two different approaches to factors of innovation. In both approaches the question of the extent of complementarities and the substitutability among various individual factors of innovation has been raised. To our knowledge, very few analyses have been conducted on complementarities among barriers of innovation.

Most of the contributions on barriers to innovation focus on the relationship between impediments to innovation and various firm characteristics, such as a firm's size, industry (technology intensity), competitive pressure of the environment and type of ownership of the firm. They show that these characteristics matter for barriers to innovation as perceived by the firms. At the same time, some innovation inputs, like R&D activities or inter-firm cooperation that are conducive to innovation, also reveal barriers to innovation.

Although the results of the existing literature on differences in barriers to innovation between large and small firms are ambiguous, many contributions show that firms face different barriers to innovation depending on their size. The descriptive statistics show that small firms are generally less innovative. Larger firms are better equipped with internal innovation resources and expertise, are better able to finance R&D from internal sources, are able to reap the rewards from innovation, and can diversify the risk of introducing innovation (Vossen 1998). The relative strength of small firms lies in behavioural characteristics such as flexibility and more improvisation in the task (Rothwell 1989). Different analyses find mixed results regarding the perception of barriers conditional to firm's size. Baldwin and Lin (2002) posit that large firms are more likely to report barriers to innovation than small firms due to differences in technology advancement. Baldwin and Lin, as well as Tourigny and Lee (2004), argue that large firms are more likely to report cost-related and organization-related barriers to innovation than small firms. This, however, contradicts the results of Mohnen and Rosa (1999), Hyptinen and Toivanen (2005) and Immmarino et al. (2007) studies, who found that small rather than large firms recognize financial constraints as a significant barrier to innovation.

Many studies that deal with barriers to innovation consider technology intensity (Dossi, 1988). It is assumed that technology intensity has an impact on the type of encountered barriers. As there are considerable differences in intensity of innovation across industries, firms in different industries face different barriers (Baldwin and Lin, 2002; Tourigny, 2004). Firms in low and medium low technology industries are less likely to face impediments to innovation than those in high and medium high technology industries.

The rationale to include competition in the analysis of barriers to innovation is provided by the literature. Baldwin and Lin (2002) and Mohen and Rosa (1999) show a positive and significant relationship between barriers to innovation and competition. Mohnen and Rosa (1999) find that firms which face less competition have a tendency to consider questions related to barriers irrelevant. Baldwin and Lin (200) and Tourigny (2004) posit that the more competition firms face, the more likely they are to face cost, labour and other problems, for example expertise-related problems. This suggests that the barriers to innovation are strongest when competition is at its highest level or that the most innovative firms are those which perceive impediments to innovation most strongly.

There are very few studies on differences in perceptions of innovation between domestic and foreign firms. Immmarino et al. (2007) show that foreign-owned and Italian-owned multinational corporations (MNC) operating in northern and

central Italy have different perceptions of barriers to innovation. Foreign-owned firms are more aware of the problems encountered when innovating than domestic ones. Studies have shown that important differences in firms' perceptions of barriers to innovation occur across types of firms in terms of their size, ownership, technology intensity, and competitive pressure.

The next stream of research on factors influencing barriers to innovation concerns the relationship between these barriers and a firm's propensity to innovate (Blanchard et al., 2010), the degree of innovation (Pihkala et al., 2002), and between barriers and innovation factors (for example Canijels and Verspagen, 2001 who write about the impact of barriers on knowledge spillovers).

Pihkala et al., (2002) relate a different set of barriers to different categories of small firms. They show that perception of barriers to innovation is negatively correlated with a firm's degree of innovation. For example, market conditions are perceived as the most significant for highly innovative firms, while in-house knowledge and information are perceived as the most significant for less innovative firms.

The third strand of research on factors of innovation concerns complementarities between them. Most of the research focuses on complementarities between factors that are conducive to innovation (Cassiman and Veugelers, 2002; Polder et al., 2010; Mazzati, 2007; Love and Roper, 2009) as they act as partially intangible assets to the competitiveness of firms. It is studied along different conceptual and empirical perspectives: evolutionary, systemic-oriented and dynamic-focused streams of research. There are very few analyses on the complementarities of barriers to innovation (Mohen and Roller, 2005; Galia and Legros, 2004).

Mohen and Roller (2005) developed a framework for testing complementarities and substitutability in innovation policy. Based on Ireland, Denmark, Germany and Italy, and using a generalized Tobit model, they investigated two phases of the innovation process: the decision to innovate or not to innovate and the intensity of innovation. They found that these two phases are subject to different constraints. Moreover, they show that some barrier pairs are substitutable in the propensity to innovate, while complements in the intensity of innovation. For example the lack of finance and the lack of opportunity to cooperate are complements for the intensity to innovate, but substitutable for the propensity to become an innovator.

Galia and Legros (2004) use the French CIS2 data and use a different approach than Mohen and Roller (2005). They analyse differences and complementarities between barriers to innovation of the two types of firms: those that postponed projects and those that abandoned projects. They found that these two types of firms are subject to different barriers and different complementarities among them.

There are some studies on barriers to innovation in less developed countries. Using factor analysis, Hadjimalis (1999) found that barriers to innovation are not correlated to innovativeness and horizontal networking in Cyprus. The differences in perception of barriers to innovation in Cyprus as compared to more developed countries are due to the deficiencies in the business environment in Cyprus, i.e. the shortage of resources and technology.

3. METHODOLOGY AND VARIABLES

The study uses firm level data from both the Third and Fourth Community Innovation Survey (CIS4 refers to the period 2002–2004 and CIS5 to the period 2004–2006) for Polish manufacturing firms, released by the Central Statistics Office. The dataset for CIS6 does not include barriers to innovation questions.

Our analysis covers a 5 year period, 2002–2006. This was a growth phase in the Polish economy so changes in innovation activities and the perception of innovation barriers of analysed firms were not influenced by change in the economic cycle. As our analysis shows small changes in performance in 2006 as compared to 2004, in the paper we present data only for 2006.

The paper focuses on innovative firms exclusively. We do not analyse noninnovating firms in the period under consideration as very few of them use knowledge inputs. We use the CIS definition, according to which an innovative firm is the one which introduced a new or significantly improved product (either a good or service) or any new or significantly improved process for producing or supplying products new or significantly improved to the enterprise in the period covered in a given CIS. This definition is consistent with the standard definition of innovation as recommended by the Oslo Manual (OECD, 2005). However, as we consider CIS3 and CIS4, innovative firms are those that introduced new or significantly improved products or processes in either CIS4 or CIS5.

Using weighted data we examine private (domestic and foreign-owned) manufacturing firms that were included in both CIS3 and CIS4, and excluded from our analysis firms that were included only in one of the two CIS. Our panel covers 3,600 manufacturing firms that were innovators either in both periods (both CIS) or only over one period. Based on the criteria of the frequency of introduction of innovation, we introduced a taxonomy of Polish innovating firms. The firms that introduced innovation in both periods are called persistent innovators. The firms that introduced innovation in one of the periods, either in 2002–2004 or in 2004–2006, are called occasional innovators. Our panel covers 2,371 persistent and 1,229 occasional innovators (Table 1).

The size of the firms is measured by the number of employees: 20–49 employees (small firms), 50–249 employees (medium) and more than 249 (large). In terms of technology intensity, firms are classified into four groups based on the OECD definition: low technology, medium-low technology, medium-high and high technology. The share of export of innovative products is used as a proxy for internationalization of production. Based on these criteria, we selected nonexporting and exporting firms. The latter are divided into two groups: the ones whose share of exported innovative products is below 10% and the ones in which the share exceeds 10%. Only private firms are analysed in the paper and we check for domestic and foreign-owned firms.

We characterize the innovative activities of firms in terms of knowledge inputs into the innovation process and their sources. We distinguish between five different knowledge inputs. First, we consider the continuity of R&D activities which reflects the differences in the frequency of in-house R&D and developing a firm's own technology. We also consider the acquisition of other (intangible) external knowledge (purchase or licensing of patents and not-patented inventions, know-how, and other types of knowledge from other enterprises and organisations). As the New Member States' innovation activities are based mostly on other external sources of innovation, we consider those that are included in the CIS. They cover types of partners while developing innovation, partners in cooperation in innovation activities, and other sources of market information. We also consider within-firm innovation activities while developing product and process innovation.

We investigate all eleven barrier items listed in CIS3 and CIS4, sometimes referring to barrier groupings: financial barriers (lack of funds within an enterprise or group, lack of finance from external sources and too high innovation costs), knowledge barriers (lack of qualified personnel, lack of information on technology and markets, difficulty in finding cooperation partners for innovation), market barriers (market dominated by established enterprises and uncertain demand for innovative goods) and reasons not to innovate (no need due to prior innovations and no need because of lack of demand for innovations). Our approach differs from Mohen and Roller's (2005), who selected one innovation barrier item out of each four sets of barriers.

In the literature, there are three approaches to complementarities (Athey and Stern, 1998; Galia and Legros, 2004; Mohen and Roller, 2005). In this paper we pursue the correlation approach on eleven variables. We implement a four-step procedure which includes barriers to innovation and explanatory variables. Firstly, the binary correlation between eleven barriers is estimated to show possible complementarities among them, that is to identify barriers which go hand in hand and the possible groupings. Secondly, the Principal Component Analysis is carried out in order to confirm identified groups of barriers. Thirdly, we conduct econometric analysis based on a probit model. It covers eleven independent equations which estimate the eleven barriers separately and examine correlations between the residuals of each equation. Barriers are binary: 1 - if firms perceive the barrier as important or very important; 0 – if the importance is low or null. A given barrier is a dependent variable, while characteristics of firms and innovation inputs are independent variables. The same set of independent variables is used in the equations. The reference categories for the analysis are presented in Tables 4–10 and in the Appendix (Table A1). The general specification of the probit model is as follows:

$$y_j^* = \alpha_j + x\beta_j + u_j, j = 1, ..., 11$$

where y_j^* are the latent variables corresponding to the probability that a firm perceives j-th barrier as important, x is a vector of explanatory variables, α_j and β_j are coefficients of j-th equation, uj are disturbances of j-the equation. We use the same explanatory variables for all equations. Variables y_j^* are unobserved. We observe binary variables y_i , where

$$y_i = 1$$
 if $y_i^* > 0$ and $y_i = 0$ otherwise.

We assume that the disturbances have a multivariate normal distribution with mean vector 0 and covariance matrix with diagonal elements equal to 1.

The probit model shows differences in sensitivities to perception of innovation barriers conditional on four firm characteristics and on sources of five types of innovation inputs that firms used. In the fourth step of analysis, correlations between residuals of each equation of probit model are estimated. Taking into account the explanatory variables, this step intends to confirm (or reject) the simple binary correlations.

4. CHARACTERISTICS OF PERSISTENT AND OCCASIONAL INNOVATORS

In terms of size, ownership of firms, technology intensity and export intensity, differences in characteristics between the two types of innovators are slight. The sample is dominated by domestic firms and only about 20% are foreign owned. The share of the latter in the persistent innovators population is slightly larger than in the case of occasional ones (Table 1).

The proportion of medium-sized firms in both groups of innovators is similar. However they differ in terms of the share of large and small firms. The share of large firms in the persistent innovator population is twice as big as in the occasional innovator group. The opposite is the case in small firms.

In terms of technological intensity, there are no large differences between the two types of firms. The share of high and medium-low technology industries in both groups of firms is similar. The differences between persistent and occasional innovators concern the share of medium-high and low technology intensive industries. A slightly larger share of medium high technology industries is typical for persistent innovators. The opposite occurs in the case of low technology industries.

The largest difference between the two analysed groups of innovators concerns the innovation intensity of exports (the share of innovative products in export sales). Only few (5.2%) occasional innovators export innovative products, while as much as 52.5% of persistent ones. The innovation intensity of exports exceeding 10% of sales is eight times larger for persistent innovators than for the occasional ones (Table 1). Let us notice that persistent innovators operate under much stronger competitive pressure than occasional innovators. The latter focus on selling innovative products on the domestic market.

	Perm	anent	Occas	sional			
	No of firms	% of popula- tion	No of firms	% of popula- tion			
Number of firms	2 371	100	1 229	100			
Exports share of innovative products in total exports revenue							
No exports of innovation products From 0% to 10% Above 10%.	1 246 832 293	52.5 35.1 12.4	1 165 46 18	94.8 3.7 1.5			
No of firms by ownership							
Domestic Foreign	1 814 557	76.5 23.5	995 234	80.9 19.1			
No of f	irms by siz	e					
Small firms Medium-sized firms Large firms	304 1487 580	12.8 62.7 24.5	345 742 142	28.1 60.4 11.5			
No of firms by techr	ology inter	nsity indust	ries				
High technology (HT) Medium-high technology (MHT) Medium-low technology (MLT) Low-technology (LT)	106 639 665 961	4.5 27.0 28.0 40.5	62 247 336 584	5.0 20.1 27.4 47.5			

Table 1. Description of persistent and occasional innovators in 2006

In a word, the persistent innovators are characterised by a higher share of large-sized, foreign-owned and medium-high technology industry firms than the population of occasional innovators. The former group is also exportoriented while the occasional innovators concentrate on the domestic market.

The small (except for export exposure, where the difference is substantial) differences in characteristics between the two groups of firms are accompanied by significant differences in frequency in firm's knowledge sourcing activities, i.e. the frequency of the use of knowledge inputs (Table 2).

As commonly used data on in-house R&D intensity measured by the share of in-house R&D in sales revenues have not been disclosed to us, we use the continuity of in-house R&D activities in a firm as a proxy of R&D intensity. We explore the CIS question of whether a firm conducts in-house R&D continuously, occasionally or not at all. Almost 82% of occasional innovators and 60% of persistent innovators do not conduct in-house R&D activities. Only 14% of persistent innovators conduct regular in-house R&D activities but this proportion is three and half times bigger than for population of occasional innovators. Persistent innovators are much more prone to conducting R&D activities and their R&D intensity is possibly higher. However, we find the opposite in case of acquisition of external knowledge. The share of persistent innovators that acquire this type of knowledge is three times lower than the share of occasional ones. More frequent involvement of persistent innovators in in-house R&D activities is accompanied by less frequent acquisition of external knowledge. The frequent use of external knowledge (like purchase or licensing of patents and non-patented inventions, know-how, and other types of knowledge bought from other organisations) by occasional innovators substitutes for conducting own research. In-house R&D activities of persistent innovators substitute rather than complement above mentioned external knowledge. Our results do not support findings of the existing literature, which presents arguments for complementarity between in-house R&D and external knowledge (Cassiman and Veugelers 2002).

Research studies (Veugelers and Cassima, 1999; Fabrizio, 2009; Mazzanti and Mancinelli, 2007) provide strong evidence for R&D active firms to be more active in using various types of external sources of knowledge. Persistent innovators that are more often engaged in in-house R&D activities also more frequently use various external knowledge sources. Their expenditure on R&D is also complementary to their networking activities. As networking cannot exist without R&D activities acting as the primary engine, the R&D intensive firms use external sources of innovation intensively. For example other firms within their group act as sources of information on innovation for 56.5% of persistent innovators and for 18.6% of occasional innovators. Persistent innovators cooperate in innovation activities five times more frequently with other firms within their group and with suppliers of equipment and materials, competitors, and/or scientific institutions than occasional ones.

In innovation strategy, occasional innovators tend to focus on process innovation while persistent ones focus on product innovation. 47.2% of occasional innovators develop process innovation and 24.2% develop product innovations by themselves or within the group they belong to. Meanwhile, for persistent innovators, the figures are 59.9% and 64.3%, respectively. 11.6% of occasional innovators which develop process innovations and 2.2% which develop product innovations cooperate with other firms (in the case of persistent innovators, the figures are 15.1% and 8.2% respectively).

To sum up, the two groups of innovators differ in knowledge sources they used and in innovation strategies they introduced: persistent innovators are externally oriented (use of network) and focus on product innovation while occasional innovators focus on process innovation.

The frequency of perception of three financial innovation barrier items (a-c, Table 3) as very important or important is largest among all barrier items. It is not surprising as financial problems are particularly acute in innovation activities due to some of their inherent characteristics (Hall 2002; Mohen et al., 2008). These barriers are perceived by every other firm in the sample. However it is

	Perm	anent	Occasional		
	No of firms	% of popula- tion	No of firms	% of popula- tion	
a) Lack of funds within firm or group	1 394	58.8	713	58.0	
b) Lack of finance from external sources	1 220	51.5	656	53.4	
c) Innovation costs too high	1 591	67.1	786	64.0	
d) Lack of qualified personnel	803	33.9	437	35.6	
e) Lack of information on techno- logy	634	26.7	392	31.9	
f) Lack of information on markets	570	24.0	326	26.5	
g) Difficulties in finding cooperation partners	657	27.7	416	33.8	
h) Market dominated by establi- shed firms	1 025	43.2	520	42.3	
i) Uncertain demand for innovative goods or services	1 210	51.0	567	46.1	
j) No need because of no demand for innovations	424	17.9	265	21.6	
k) No need due to prior innovation	487	20.5	317	25.8	

Table 3. Frequency of firms' perception of barriers to innovations according to descriptive variables (% of firms facing at least one barrier) in 2006

worth noting the excessive costs of innovation are perceived as a serious barrier even more often. Barrier items that follow in importance are: market dominated by established firms, uncertain demand for innovative goods, and lack of skills of employees. Occasional innovators more frequently than persistent ones perceive as important 7 out of 11 barrier items. More occasional innovators also recognise two reasons not to innovate: prior innovation and no demand for innovations.

In sum, the two types of firms differ in the frequency of perception of innovation barrier items within given sets of barriers, but also between the sets themselves. Two sets of barriers, knowledge and no need to innovate, are more strongly perceived by occasional innovators while market barriers are more strongly perceived by persistent ones. The lack of funds within firms or groups of firms is perceived as a barrier to innovation by every second firm.

	Perm	anent	Occas	sional
	No of firms	% of popula- tion	No of firms	% of popula- tion
R&D activities				
In-house R&D continuous R&D on occasion None – R&D activities Acquisition of other external knowledge	334 615 1 423 471	14.1 25.9 60.0 19.9	47 176 1 006 799	3.8 14.3 81.9 65.0
Institutions and firms cooperating	1			
Mainly your enterprise or enterprise	1 525	64.3	297	24.2
group	1 020	04.0	207	27.2
Your firm together with other firms or domestic scientific institutions	194	8.2	27	2.2
Your firm together with other firms and/ or foreign scientific institutions	65	2.7	10	0.8
Domestic scientific institution	23	0.3 1.0	2	0.2 0.7
Mainly foreign enterprises and /or scienti- fic	23	1.0	9	0.7
Mainly other domestic firms	21	0.9	13	1.1
Institutions and firms cooperating	in developi	ng process	innovation	S
Mainly your enterprise or enterprise group	1 421	59.9	580	47.2
Your firm together with other firms or domestic scientific institutions	357	15.1	143	11.6
Your firm together with other firms and/ or foreign scientific institutions	131	5.5	28	2.3
Domestic scientific institution	21	0.9	6	0.5
Mainly foreign enterprises and/or scienti-	79	3.3	37	3.0
fic Mainly other domestic firms	155	59.9	107	47.2
Cooperation partners i	n innovatio	n activities		
Other firms within your firm group Suppliers of equipment. materials, com- ponents, or software	420 979	17.1 41.3	44 104	3.6 8.5
Clients and /or customers	658	27.8	58	4.7
Competitors or other firms in your sector	281	11.9	27	2.2
R&D sector*	593	25	593	4.2
Sources of market info	1			
Other firms within your firm group Suppliers of equipment. materials, com- ponent, and software	1 340 383	56.5 16.2	229 107	18.6 8.7
Clients or customers	744	31.4	133	10.8
Competitors or other firms in firm sector R&D sector*	412	17.4	101	8.2
Other sources**	276 667	11.6 28.1	65 136	5.3 11.1
		2011		

Table 2. Differences in knowledge sources between persistent
and occasional innovators in 2006

^{*} Including consultants, commercial lab. private and government, universities and higher education institutions

** Conferences, trade fairs, exhibitions, scientific journals and trade/technical publications, professional and industry associations

5. TESTING FOR COMPLEMENTARITIES BETWEEN BARRIERS TO INNOVATION

We begin with an analysis of possible relationships between different barriers to innovation and study simple binary correlations between eleven barriers. To confirm the results of the above correlations, we use the Principal Component Analysis.

All barriers are positively correlated. The correlation matrix (Appendix Tables A2 and A3) allows us to group barriers to innovation for persistent and occasional winnovators. It shows that, first of all, the level of correlation of innovation barriers is highest within each of four sets of barriers selected by CIS, i.e. financial barriers (a-c), knowledge barriers (d-g), market barriers (h-i) and reasons not to innovate (j-k), rather than between them.

Secondly, in most cases the types of correlated pairs of barriers and the resulting groupings in persistent and occasional innovators are similar. For both types of innovators, the correlation between barriers related to financial factors, i.e. lack of funds within a firm or from external sources is high (0.599 for persistent and 0.609 for occasional innovators). The correlation between the excessive costs of innovation and the lack of finance within a firm (0.463 and 0.464 respectively) as well as the high costs of innovation and external funds (0.434 and 0.518) go hand in hand. The correlation between lack of skills and lack of information on technology is high (0.463 and 0.569). The lack of information on technology and lack of information on the market are highly correlated (0.587 and 0.623). The uncertain demand for innovative goods and the domination of the market by established firms go hand in hand (0.469 and 0.540).

However, there are also pairs of barriers that appear to be slightly correlated, such as "difficulties in finding cooperation partners" and the "domination of the market by established firms" (0.254 and 0.362), and "no need to introduce innovation due to prior innovation" and the "lack of information on markets" (0.271 and 0.233).

Moreover, there are some differences in correlations between barriers perceived by persistent and occasional innovators. The lack of information on technology correlates strongly with the lack of information on markets in case of persistent innovators (0.587), while in the case of occasional innovators, it correlates strongly with the lack of skills (0.623). In the case of persistent innovators, difficulties in finding a cooperation partner go hand in hand with the lack information on the market (0.438), while in the case of occasional innovators, it goes hand in hand with the lack of information on technology.

Thirdly, in the case of occasional innovators, the level of correlation is a bit higher than for persistent innovators.

To exclude the impact of third variables that may strongly impact the binary relationships reflected in the Pearson correlation and to confirm the correlation results, we employ Principal Component Analysis (PCA). Its purpose is to select groups of barriers that explain the variance in the responses to barriers, that is to select factors that underlie a larger sets of variables. PCA is conducted separately for persistent and occasional innovators. PCA (Table A.4 in Appendix) selects three groups of barriers to innovation that explain the modest 57.54% of the variance in the case of persistent innovators and 62.23% in the case of occasional ones. So the quality of adjustment provided by the three factors selected for both types of innovators is satisfactory.

In case of persistent innovators, the first factor accounts for a maximum variance of data: it explains 20.26% of variance. It gathers four factors: lack of qualified personnel, lack of information on technology, lack of information on markets, and difficulties in finding cooperation partners. As it refers to knowledge, it is interpreted as the 'knowledge factor'. The second factor accounts for the maximum variance that has not been accounted for by the first factor and explains 19.13% of variance. As it covers three financial barriers, it is interpreted as a 'financial factor'. In the third factor (explaining 18.15% of variance), barriers related to the market dominate. It is interpreted as a market barrier.

In case of occasional innovators, the first factor covers knowledge barriers to innovation and explains 18.15% of variance. The second one contains not only financial barriers but also barriers stemming from market conditions: the dominance of established firms and the uncertain demand for innovative goods or services. It explains 23.46% of variance. The third factor, which explains 15.27% of variance, covers barriers stemming from uncertain demand for innovative goods or services and no need to innovate because of lack of demand for innovations.

In short, although for both populations (persistent and occasional innovators) the PCA confirms the binary correlation results, there are some differences in factors grouping between the two populations (see Appendix, Table A.4). Moreover, the results of the above analysis are not fully in line with the groupings of Mohnen and Rosa (2002), nor with Galia and Legros (2004), although they selected financial factors as well.

6. RESULTS OF TESTING FOR PROBABILITY OF PERCEIVING INNOVATION BARRIERS

Correlations between innovation barriers give only a preliminary idea on complementarities between them. In this section, we perform an econometric analysis and look at the correlations of the residuals where the individual effects are controlled by the presence of other variables reflecting firms' characteristics and knowledge sources. We show that the likelihood of a firm perceiving barriers to innovation is increased or reduced by the existence of given inputs or characteristic of firms. In other words we show the difference between two groups of innovators in the probability of perceiving innovation barriers conditional on the characteristics of firms and the innovation knowledge sources they explore.

6.1. PROBABILITY OF PERCEIVING INNOVATION BARRIERS CONDITIONAL ON FIRM CHARACTERISTICS

In this section we present commonalities and differences in sensitivities to the perception of barriers between persistent and occasional innovators conditional on firm's characteristics.

Large and/or medium-sized innovators are less affected by most¹ innovation barriers than small ones (see the negative (significant) coefficients, Table 4). Large firms are less sensitive to most innovation barriers than medium-sized ones. The smaller the firm, the larger the probability of perceiving innovation barriers. Although there are many common barriers that large and medium-sized firms of both groups of innovators are sensitive to, probability of perceiving them by persistent innovators is relatively lower.

Reference category are small firms. In parenthesis – coefficient of the probit model. Significant at 0.05 level.

Large and/or medium-sized innovators are less sensitive to most, but two² innovation barriers than small ones. The sensitivity to perception of most innovation barriers of large innovators is lower than that of medium-sized. The smaller the firm, the larger probability of perceiving innovation barriers. Although there are many common barriers that large and medium-sized firms of both groups of innovators share, probability of perceiving them by persistent innovators is lower than by occasional innovators.

In both groups of innovators the sensitivity to perception of innovation barriers in medium-low technology industries diminishes, while in high technology industries it increases. The higher the technological intensity of an industry, the probability of perceiving of a greater number of barriers increases. On the other hand, there are quite large differences in perception of innovation barriers between persistent and occasional innovators operating in three sectors. Persistent innovators belonging to high technology and medium-high technology industries are sensitive to the same barriers, which are different from those perceived by occasional innovators. However, persistent and occasional innovators operating in medium-low technology industries are sensitive to different barriers except for one³.

Exporters of innovative products are more prone to perceiving barriers to innovation than non-exporters. Population of persistent innovators where every second firm is engaged in the export of innovative products tend to perceive more barriers than occasional innovators who focus on domestic market. Secondly, the higher the share of innovative goods export, the more barriers are perceived. For example, persistent innovators whose export share exceeds 10% perceive four barriers, while firms with an export share of less than 10% perceive only one barrier. Thirdly, higher share of innovative goods' exports is accompanied by lower sensitivity to perception of more barriers. It means that differences

¹ All but two: lack of market information and lack of demand for innovation products.

 $^{^{2}}$ All but lack of market information and lack of demand for innovation products.

³ The lack of external finance.

characteristics
on firms'
conditional o
barriers
innovation
ę
perceiving
ę
. Probability
Table 4.

		Permanent		Occasional
	Š	Sensitivity to barriers	Ser	Sensitivity to barriers
	increases	diminishes	increases	diminishes
		Size of firms		
Large firms		Internal finance (-0.56) External finance (-0.42) Costs (-0.54) Skills (-0.37) Cooperation partner (-0.31) Dominant position (-0.52) Uncertain demand (-0.52)		Internal finance (–0.31) External finance (–0.22) Costs (–0.26) Skills (–0.45) Cooperation partner (–0.31) Technology info. (–0.44)
Medium sized		Internal finance (-0.31) External finance (-0.22) Costs (-0.26) Skills (-0.19) Cooperation partner (-0.28) Dominant position (-0.25) Uncertain demand (-0.40) No demand (-0.23)		Internal finance (–0.20) External finance (–0.60) Costs (–0.63) Dominant position (–0.29) Cooperation partner (–0.22) Technology info. (–0.20)
		Technology intensity of industries	stries	
High Technology	Skills (0.31) Market info. (0.3) No demand (0.3)		No need (0.57)	Costs (-0.66)
Medium-high Technology	Skills (0.25) Market info. (0.16)	Uncertain demand (-0.17) No demand (-0.21)	Cooperation partner (0.22)	
Medium-low Technology	Cooperation part- ner (0.17)	External finance (–0.19) Uncertain demand (–0.4) Dominant position (–0.2)		External finance (–0.16) Costs (–0.22) No demand (–0.31)
		Exports of innovation products as % of sales	% of sales	
>0%-10%		Uncertain demand (-0.18)		
>10%	Skills (0.16)	Costs (–0.21) Dominant position (–.22) Uncertain demand (–0.4) Prior innovation (–0.21)		Dominant position (–1.25).

between two groups of innovators in export intensity of innovative products accompany differences in number of barriers they are sensitive to. Fourthly, the dominant position of established firms on the domestic market is the only common barrier to which sensitivity to perception of barriers in both groups of innovators lowers. This is the only barrier perceived by occasional exporters of innovative products. However the probability of perceiving this barrier by them drops very significantly and much more strongly than by occasional innovators (see coefficient in Table 4).

To sum up, internationalization of production accompanies more frequent perception of innovation barriers. However, higher internationalization accompanies a drop in probability of perceiving these barriers.

Ownership of firms (foreign versus domestic) seems to affect the perception of innovation barriers. When compared to domestic firms, foreign-owned firms operating in Polish manufacturing sector have a decreasing sensitivity to innovation barriers in the case of almost all barriers. This result is in line with the findings of the analysis conducted by Immarino et al. (2007) on northern and central Italy. They show that foreign-owned MNC tend to rate most obstacles to innovation as important or very important significantly less often than domestic ones. In our population of firms there are differences in the drop in sensitivity to innovation barriers of foreign-owned innovators operating occasionally as compared to persistent ones. Surprisingly, this sensitivity to barriers of the foreign-owned occasional innovators decreases more than in case of their persistent counterparts.

To sum up, the more highly competitive the environment, the more barriers are perceived by innovative firms. The export of innovative products acts as a factor diminishing the sensitivities to the perception of such barriers. It also differentiates sensitivity to perception of barriers between persistent and occasional innovators. The larger the firm, the lower its sensitivity to the perception of barriers. However, the likelihood of perception of innovation barriers of large persistent innovators decreases more than that of their occasional counterparts. In respect to technology intensity, there are quite large differences in sensitivity to perception of innovation barriers between persistent and occasional innovators. Ownership matters for sensitivity to innovation barriers as perception of barriers by foreign-owned firms is lower than by domestic firms. Moreover, the probability of perceiving innovation barriers by occasionally innovating foreign-owned firms is lower than their permanently innovating counterparts.

6.2. PROBABILITY OF PERCEIVING INNOVATION BARRIERS CONDITIONAL ON INNOVATION INPUTS

The previous section has shown that firm characteristics matter for the assessment of sensitivity to the perception of innovation barriers. In this section we consider the impact of different types of knowledge sources that firms use on sensitivities to innovation barriers: in-house R&D, forward linkages to customers, backward linkages to suppliers, horizontal linkages to competitors and linkages to R&D institutions while developing innovation.

We start with internal source, that is in-house R&D. As a proxy for firm involvement in R&D, we use the variable presenting the continuity of in-house R&D activities of a firm.

	Perm	anent	Occasional			
	Sensitivity	to barriers	Sensitivity to barriers			
	increases	diminishes	increases	diminishes		
Continuous R&D		Internal finance (–0.22) External finance (–0.31). Cooperation partner (–0.25). No demand (–0.21)		Market info. (–0.86)		
R&D on occasion	Skills (0.13). Technology info. (0.22) Market info. (0.18)					
Purchase of other intan- gible tech- nology			Internal finance (0.29) External finance (0.2) Market info. (0.25) Uncertain demand (0.45) No demand (0.24)			

Table 5. Probability of perceiving innovation barriers conditional on the continuity of internal R&D and the purchase of external intangible technology

In case of R&D inputs, reference category are no-R&D firms. In case of purchase of other intangible technology reference category are firms that do not purchase this technology. In parenthesis – coefficient of the probit model. Significant at 0.05 level.

Table 5 presents differences in sensitivity to perception of innovation barriers between firms that based their innovation activities either on in-house R&D (continuous and occasional) or on purchase of external intangible technologies. In case of both groups of innovators, firms with continuous in-house R&D activities reveal more innovation barriers than those that undertake in-house R&D on occasion. Continuous R&D activities decrease the sensitivity to perception of barriers while non-regular R&D activities increase this sensitivity. The continuous R&D of persistent innovators lowers the sensitivity to perception of three barriers⁴, while in case of occasional innovators only one barrier⁵. Non-regular R&D increases the sensitivity to the perception of three barriers only for persistent innovators and does not reveal any barrier for occasional innovators.

The rare involvement of occasional innovators in R&D activities accompanies the frequent purchase of external intangible technology. However, contrary to continuous R&D, the purchase of external technology increases the sensitivity to perception of financial barriers of occasional innovators. Although the purchase of other intangibles by occasional innovators seems to substitute for the R&D activities of persistent ones, there are differences in sensitivity to perception of innovation barrier between them.

In case of within firms and group reference category are firms that do not introduced a given form of innovation (either product or process innovation) while in other cases – firms that do not cooperate or subcontract innovation while developing innovation. In parenthesis – coefficient of the probit model. Significant at 0.05 level.

Persistent innovators cooperation for developing process innovation reveal much fewer innovation barriers than occasional innovators which developed process and product innovation. However, occasional innovators' sensitivities to perception of barriers increase much stronger than in case of the persistent innovators (Table 6). The increase in sensitivity to perception of only two barriers⁶ is common to both groups of innovators (Table 6). The drop in this sensitivity is also more frequent for persistent innovators. The differences between the two types of innovators concern as much as 6 barriers⁷.

All in all, different ways of developing product and process innovation, i.e. within a firm or in cooperation, reveal a sensitivity to perception of different barriers of persistent as compared to occasional innovators.

⁴ Namely, lack of finance within and outside firm and difficulties in finding cooperation partners.

⁵ Namely, lack of market information.

 $^{^{\}rm 6}$ Namely, excessive costs of innovation and the dominant position of established firms in innovative goods market.

⁷ These are: lack of qualified personnel and difficulties in finding cooperation partner (revealed in the case of persistent innovators) and lack market information, lack of technology information and lack of finance within and outside firm (revealed in case of occasional innovators).

Table 6. Sensitivity to barriers of innovation conditional
on firms' partners in development of product and process innovation

Firms and	Perm	anent	Occasional			
institutions		Sensitivity	to barriers			
	increases	diminishes	increases	diminishes		
	Develop	oment of product i	nnovation			
Within firm and group	Dominant position (0.17) Uncertain demand (0.29)		Market info. (0.86) Dominant position (0.87)			
In coopera- tion	Costs (0.27) Dominant posit. (0.24) Uncert. demand (0.35)			Internal finance (–0.80) Prior innova- tion (–0.99)		
With dome- stic	Cost (0.63)	Cooperation partner (–0.88)	Costs (1.88) Dominant position (2.1)			
With foreign		Cost (–0.74) Cooperation partner (–0.84)		External finance (–1.41)		
	Develop	oment of process i	nnovation			
Within firm and group		No demand (–0.25)	Cost (0.74) Market info. (0.86)			
In coopera- tion			Technology info. (0.61) Market info. (0.89) Dominant position (0.87)			
With dome- stic		Market info. (–0.49) No demand. (–0.40)	Market info. (1.02) Dominant position (0.81)			
With foreign	Skills (0.38)		Cost (1.05) Dominant position (1.41)			

Table 7. Sensitivity to barriers of innovation conditional on firms'
cooperation in innovation activities and on firms' sources
of market information for innovation activities

	Perm	anent	Occasional			
		to barriers		to barriers		
	increases	diminishes	increases	diminishes		
	,	arriers of innovat ration in innovatio		<u> </u>		
Suppliers	Technology info. (0.16) Cooperation partner (0.17)		External finance (0.46)	Technology info. (–0.43) Market info. (–045)		
Customers	Skills (0.23) Dominant position (0.17)		Costs (0.65) Uncertain demand (0.59)			
Competitors	External finance (0.19)					
R&D institu- tions	Dominant position (0.20) Uncertain demand (0.20) No demand (0.20)	Technology info. (-0.16)				
on fir	Sensitivity to ms' sources of m	innovation barrie arket information		ivities		
Suppliers		Dominant position (–0,17) Uncertain demand (–0.26)				
Customers		No demand (–0.19)	Technology info. (0.33)			
Competitors	Cost (0.24) Uncertain demand (0.26) Dominant posit. (0.29)		Cost (0.85) Skills (0.43) Market info. (0.37) Dominant position (0.38) Uncertain demand (0.56			
R&D institu- tions	Prior innova- tion (0.27)	External finance (–0.21) Cost (–0.28)				

Reference category are firms, whose innovation is developed within firm or its group. In parenthesis – coefficient of the probit model. Significant at 0.05 level.

For both persistent and occasional innovators, cooperation in innovation activities usually increases sensitivities to the perception of innovation barriers. However this occurs more frequently in persistent innovators (Table 7). Considering that persistent innovators cooperate in innovation activities more frequently than occasional ones suggests that cooperation in innovation reveals more barrier items. Thus, the wider the cooperation in innovation, the more barriers are revealed.

The use of market information on innovation more frequently increases the probability of perception of innovation barriers. As persistent innovators are two to three times more likely to use market information (Table 2), their sensitivity to the perception of more barriers increases than in case of occasional ones (Table 7). Almost all market information sources reveal innovation barriers to persistent innovators. In short, the more market information on innovation is used, the more barriers are revealed and the sensitivity to more barriers increases. The more sources of information are used, the more barriers are revealed.

7. RESULTS OF TESTING FOR COMPLEMENTARITIES BETWEEN INNOVATION BARRIERS

The Section 4 on simple correlations between barriers to innovation gives only a preliminary idea of complementarities between them. In this section, we examine whether simple correlations are confirmed once we control for firms' characteristics and innovation inputs used. We estimate the correlation of disturbances, i.e. the correlations between barriers conditional on explanatory variables used in the paper.

Estimations of the correlation between barriers conditional on explanatory variables are shown in Tables A5 and A6. Comparisons of Tables A2 and Table A5, and also Table A3 and Table A6, show that there are no differences in the calculations of simple correlations and that one takes into account the impact of exogenous variables: characteristics of firms and innovation inputs. That is the 'suggestive evidence of complementarity'. This concerns both persistent and occasional innovators. Section 6 shows that external variables differentiate sensitivities to perception of innovation barriers between the two groups of innovators. However they do not change the relationship between barriers revealed in simple correlations, that is complementarities over barriers.

All pair-wise complementarities are significant after controlling for exogenous variables (Tables A5 and A6).

A large number of pair-wise complementarities of persistent and occasional innovators are within all sets of innovation barriers: financial, market and knowledge. For both groups of innovators, the high costs of innovations and lack of internal and external finance are highly complementary, i.e. they act together and reinforce each other. This means that the perception of costs barrier is higher whenever there are insufficient internal or external financing. The complementary character of the interdependence of these three barriers means that improvement in access to one of them (for example improvement in access either to external or to internal financing) decreases a firm's perception of other barriers (cost barrier). This suggests that improvements in firm's access to finance stimulate innovation.

Furthermore, four knowledge barriers are complementary in both groups of innovators. The lack of qualified personnel is highly complementary to lack of market and technology information and, for occasional innovators, it is also complementary to difficulties in finding cooperation partners. However, the coefficient reflecting the level of complementarity of the latter barrier to the skills barrier is lower than for other barriers within the set of knowledge barriers. Whenever there is a lack of qualified employees, the access to market and technology information worsens even more (coefficient reflecting the level of complementarity for occasional innovators is higher than for persistent ones, see Table A4 and 5). At the same time, the difficulties in finding cooperation partners increase even more. Insufficient information on technology and markets is perceived by more firms as a barrier whenever there is insufficient internal human capital. Therefore improvements in the skills of employees results in the improvement in access to information in both groups of innovators).

As for the set of market barriers (a market of innovative goods dominated by established firms and an uncertain demand for innovative goods or services), there is one commonality and some differences in the pair-wise complementarities of barriers between persistent and occasional innovators. The dominant position of established firms and the uncertain demand for innovative goods go together for both persistent and occasional innovators. This suggests that the structure of innovative products market has an impact on the innovation activities of other firms operating in this market.

It is worth mentioning that for occasional innovators, some barriers, for example the dominant position of established firms in the market of innovative goods, uncertain demand for innovative goods and lack of skills, are complementary to more barriers than for persistent ones (graph 1). The first two barriers are worsened by the lack of market information and difficulties in finding cooperation partners. The cost barrier is complementary to more barriers for occasional than for persistent innovators. For occasional innovators, unlike their persistent counterparts, the domination of established firms in the innovative goods market more strongly worsens the excessive cost of innovation. The latter barrier, the lack of market information and difficulties in finding cooperation partner barrier worsen the uncertain demand for innovation goods' barrier more strongly. Also, for occasional innovators the skills barrier further worsens difficulties in finding cooperation partner.

Permanent innovators exclusively

Graph 1 presents differences in complementarities between barriers to innovation between two groups of innovators. For persistent innovators, complementarities between barriers are within barrier sets. For occasional innovators, they exist also between barrier items belonging to different sets, that is between costs barrier (belonging to economic barriers set) and both dominant position of established firms and uncertain demand for innovation products (market barriers set), and also knowledge barriers set.

The coefficients reflecting the level of complementarity of all the barriers are higher for occasional than persistent innovators. It suggests stronger complementarities between innovation barriers in case of the former as compared to the latter groups of innovators. The strongest complementarities for both groups concern complementarities between two financial barriers, two market barriers (the dominant position of established firms and uncertain demand), two barriers concerning lack of information and complementarities between lack of qualified personnel and both information barriers. It is worth to mention that for occasional innovators the coefficient reflecting the level of complementarity of the skills barrier to other knowledge barriers is higher than for persistent innovators. It shows the important role of lack of skills of occasional innovators

Finally, it appears that a chain of complementarities between innovation barriers emerges (Graph 1), which seems to contradict the innovation value chain concept (Roper et al., 2008). It starts from the lack of qualified personnel, to difficulties in finding cooperation partners, to the lack of market and technology information, to the domination of established firms in the innovative goods market to the cost barriers and to the uncertain demand for innovative goods. The first link of this chain, i.e. the lack of qualified personnel, worsens the next three links (three knowledge barriers) and the market barrier (the dominant position of established firms – suppliers of innovative goods) and they worsen the cost of innovation and the uncertain demand of occasional innovators even more. The above-mentioned differences in complementarities between persistent and occasional innovators influence more strongly the less frequent innovation activities of the occasional innovators. More complementarities between barriers of occasional innovators reflect their weaknesses in innovation resources.

SUMMARY AND CONCLUSIONS

Although Polish persistent and occasional innovators are quite similar in terms of firm size, ownership and technology intensity, they differ quite considerably in probability of perceiving of innovation barriers and complementarity among innovation barriers.

Differences in innovation strategies between persistent and occasional innovators accompany the differences in revealed barriers. Product development of persistent innovators results in the revealing of more barriers. Significantly fewer barriers are revealed when they develop process innovation. The opposite is true for occasional innovators. The more frequent cooperation with partners while developing product and process innovation and market information on innovation is used, the more barriers are revealed and sensitivity to the perception of them increases. More frequent cooperation in innovation activities of persistent innovators accompanies the perception of more barriers than in the case of occasional ones. Networking in innovation activities particularly increases the sensitivity to perception of innovation barriers. Although occasional innovators are sensitive to the perception of fewer barriers, the sensitivity of these innovators increases more than for persistent innovators. The fewer barriers are revealed, the stronger the increase in sensitivity to perception of them.

Three economic barriers, two market barriers and four knowledge barriers are complementary for both persistent and occasional innovators. For example, the lack of internal finance is highly complementary to the lack of external finance. Both barriers are highly complementary to the excessive cost of innovation. Thus, the perception of the cost barrier increases more strongly whenever there are insufficient funds.

There are some important differences in complementarities between the two groups of innovators that impact the differentiation of the frequency of innovation activities between them. Firstly, for persistent innovators, almost all barriers are complementary within barrier sets. In contrast, for occasional innovators, barrier items are complementary not only within barrier sets but also across them. The cost barrier is complementary not only to other financial barriers (i.e., within the economic barrier set) but also to barriers belonging to the market barrier set (domination of established firms in the innovative goods market and uncertain demand for innovative goods). The market domination barrier (market barrier set) is also complementary to the lack of market information and difficulties in finding cooperation partners (belonging to the knowledge barrier set). The same applies for the uncertain demand for innovative goods barrier.

Secondly, in all cases, the complementarity of barriers is stronger for occasional than for persistent innovators. This suggests that the interdependence of innovation barriers of occasional innovators is stronger than in the case of persistent innovators. As there are more pair-wise complementarities among barriers to innovation for occasional innovators, barriers to innovation worsen the innovation activities of occasional innovators more. This has an impact on differences in the frequency of innovation activities between the two groups of innovators and results in a diversification of innovators.

Thirdly, for occasional innovators we observe that there is a kind of innovation barrier chain: from lack of qualified personnel to cost barriers. The first link of this chain worsens the next links: for example, the lack of market information, the difficulties in finding cooperation partners and the lack of technology information together render the cost of innovation higher. We should keep in mind that not only is the frequency of perception of both cost and market domination barriers conditional to innovation inputs one of the highest. The cost barrier is also complementary to an uncertain demand for innovative goods. The structure of the innovative goods market is more likely to deter the innovation activities of occasional innovators than persistent innovators.

Fourthly, for occasional innovators, barriers to innovation and complementarities between them reveal weaknesses in innovation capabilities and a strong dependence on the external sources of knowledge.

Analyses of the differences in complementarity between innovation barriers of persistent and occasional innovators face the issue of the interpretation of the barriers: as 'revealed' barriers (which obstruct firms' achievements in innovation activities) and as 'deterrent' barriers (which prevent firms from engaging in innovation activities) (D'Este et al., 2008). We find that persistent innovators largely conform to a situation of 'revealed' barriers. The observed 'chain' and strength of complementarities between barriers and number of barriers that are complementary to one another suggests that some barriers of occasional innovators have a 'deterrent' character. The evidence presented in this paper points at a number of complementary relationships in innovation policy. As barriers to innovations are interdependent and reinforce one another, they should not be treated individually but should be tackled jointly. However, as the share of innovative firms in Poland is very low, there are arguments which urge policymakers to consider problems with barriers to innovation encountered by occasional innovators. As occasional innovators are often in the process of transitioning between being non-innovators to persistent innovators and vice versa, some occasional innovators may become non-innovating firms, especially during periods of economic slowdown.

APPENDIX

A.1. Explanatory variables used in the analysis. Reference category is bolded

Group of variables	Variables	No. of varia- bles in probit model
Firm size	small, medium, large	2
Technology intensity	low, medium-low, medium-high, high technology	3
Exports of innova- tion products as % of sales	no exporting , exporting <10%, expor- ting >10%	2
R&D activity	no R&D activity , continuous R&D activity, R&D on occasion	2
Ownership	domestic, foreign	1
Purchase of other technology	no purchase, purchase	1
Development of new product	not introduced a new product , developed within firm and group, developed in cooperation, domestic institutions, foreign institutions	4
Development of new process	not introduced a new process , developed within firm or its group, developed in cooperation, domestic institutions, foreign institutions	4
Cooperation in inno- vation activities	within firm or its group, suppliers, customers, competitors, R&D institu- tions	4
Sources of market information	within firm or its group, suppliers, customers, competitors, R&D institu- tions, other	5
TOTAL		28

Correlation coefficients bolded indicate higher than 0.35 values of correlation. All binary correlations are significant at the level $\alpha = 0.001$.

	Cost barriers			Kn	owledg	je barri	ers	Market barriers		Reason not to innovate	
	а	b	с	d	е	f	g	h	i	j	k
a) Lack of funds within firms or group	1,000	0,599	0,463	0,187	0,140	0,152	0,139	0,219	0,217	0,109	0,081
b) Lack of finance from sources outsi- der your firm	0,599	1,000	0,434	0,183	0,186	0,170	0,177	0,220	0,198	0,118	0,127
c) Innovation costs too high	0,463	0,434	1,000	0,241	0,191	0,157	0,226	0,240	0,239	0,117	0,114
d) Lack of qualified per- sonnel	0,187	0,183	0,241	1,000	0,463	0,357	0,277	0,226	0,162	0,205	0,161
e) Lack of information on technology	0,140	0,186	0,191	0,463	1,000	0,587	0,351	0,179	0,183	0,224	0,239
f) Lack of information on markets	0,152	0,170	0,157	0,357	0,587	1,000	0,438	0,253	0,271	0,271	0,351
g) Difficulties in finding cooperation partners	0,139	0,177	0,226	0,277	0,351	0,438	1,000	0,254	0,242	0,209	0,254
h) Market dominated by established firms	0,219	0,220	0,240	0,226	0,179	0,253	0,254	1,000	0,469	0,191	0,226
i) Uncertain demand for innovative goods or services	0,217	0,198	0,239	0,162	0,183	0,271	0,242	0,469	1,000	0,198	0,334
j) No need because of no demand for innovations	0,109	0,118	0,117	0,205	0,224	0,271	0,209	0,191	0,198	1,000	0,509
k) No need to innovate due to prior inno- vation	0,081	0,127	0,114	0,161	0,239	0,351	0,254	0,226	0,334	0,509	1,000

Table. A.2. Binary correlations between barriers to innovation. Persistent innovators

	Co	Cost barrier			owledg	ge barr	ier	Market barrier		Reason not to innovate	
	а	b	С	d	е	f	g	h	i	j	k
a) Lack of funds within firms or group	1.000	0.609	0.464	0.298	0.195	0.225	0.251	0.305	0.325	0.082	0.097
b) Lack of finance from sources outsider your firm	0.609	1.000	0.518	0.259	0.231	0.262	0.294	0.324	0.290	0.082	0.171
c) Innovation costs too high	0.464	0.518	1.000	0.255	0.244	0.255	0.302	0.400	0.392	0.082	0.134
d) Lack of quali- fied personnel	0.298	0.259	0.255	1.000	0.569	0.508	0.389	0.261	0.248	0.173	0.224
e) Lack of infor- mation on tech- nology	0.195	0.231	0.244	0.569	1.000	0.623	0.501	0.281	0.274	0.140	0.195
f) Lack of infor- mation on mar- kets	0.225	0.262	0.255	0.508	0.623	1.000	0.484	0.376	0.329	0.233	0.248
g) Difficulties In finding coopera- tion partners	0.251	0.294	0.302	0.389	0.501	0.484	1.000	0.362	0.398	0.181	0.242
h) Market domi- nated by establi- shed firms	0.305	0.324	0.400	0.261	0.281	0.376	0.362	1.000	0.540	0.169	0.238
i) Uncertain demand for innovative goods or servi- ces	0.325	0.290	0.392	0.248	0.274	0.329	0.398	0.540	1.000	0.195	0.307
j) No need because of no demand for innovations	0.082	0.082	0.082	0.173	0.140	0.233	0.181	0.169	0.195	1.000	0.492
k) No need due to prior innova- tion	0.097	0.171	0.134	0.224	0.195	0.248	0.242	0.238	0.307	0.492	1.000

Table A.3. Binary correlations between barriers to innovation.Occasional innovators

Correlation coefficients bolded indicate higher than 0.35 values of correlation. All binary correlations are significant at the level $\alpha = 0.001$.

	Perma	nent inno	vators	Occasional innovators				
	Knowledge	Financial	Market	Knowledge	Financial and market	Not to innovate		
a) Lack of funds within firms or group	,074	,833	,072	,120	,790	-,036		
b) Lack of finance from sources outsi- der your firm	,121	,799	,086	,138	,796	,005		
c) Innovation costs too high	,170	,722	,107	,158	,766	,039		
d) Lack of qualified personnel	,692	,197	,036	,749	,177	,069		
e) Lack of informa- tion on technology	,839	,077	,085	,868	,102	,041		
f) Lack of informa- tion on markets	,755	,040	,294	,795	,162	,181		
g) Difficulties in fin- ding cooperation partners	,569	,129	,272	,641	,283	,188		
h) Market domina- ted by established firms	,103	,323	,571	,282	,542	,308		
i) Uncertain demand for inno- vative goods or services	,056	,279	,675	,247	,533	,394		
j) No need because of no demand for innovations	,215	-,047	,660	,095	,000	,823		
k) No need due to prior innovation	,209	-,061	,765	,141	,096	,822		
Variance (&)	20,264	19,131	18,146	23,608	23,458	15,267		
Cumulative variance	20,264	39,395	57,541	23,608	46,966	62,233		

Table A.4. Factors selected in Principal Component Analysis

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

	Fin.int	Fin.ext	Costs	Skills	Tech.inf	Mark.inf	Cooper	Monopol	Uncl dem	No dem	Prior
											innov.
Fin.int	1.0000										
Fin.ext	0.5757	1.0000									
Costs	0.4398	0.4095	1.0000								
Skills	0.1591	0.1589	0.2238	1.0000							
Tech.inf	0.1185	0.1753	0.1848	0.4657	1.0000						
Mark.inf	0.1305	0.1611	0.1486	0.3500	0.5839	1.0000					
Cooper	0.1070	0.1574	0.2111	0.2667	0.3450	0.4341	1.0000				
Monopol	0.1847	0.1878	0.2054	0.2114	0.1687	0.2382	0.2443	1.0000			
Uncl dem	0.1764	0.1632	0.2032	0.1545	0.1796	0.2635	0.2374	0.4350	1.0000		
No dem	0.0976	0.1150	0.1174	0.2094	0.2309	0.2761	0.2097	0.1867	0.1933	1.0000	
Prior	0.0683	0.1264	0.1111	0.1626	0.2407	0.3520	0.2558	0.2292	0.3361	0.5181	1.0000
innov.											

Table A5. Matrix for the correlations of disturbances – obstacles to persistent innovators

(p=0.0011)

All coefficients are significant on level 0.001 (p < 0.001) expect (bara, bark) where p = 0.0011

	Fin.int	Fin.ext	Costs	Skills	Tech.inf	Mark.inf	Cooper	Monopol	Uncl dem	No dem	Prior
											innov.
Fin.int	1.0000										
Fin.ext	0.5872	1.0000									
Costs	0.4532	0.4911	1.0000								
Skills	0.2923	0.2461	0.2437	1.0000							
Tech.inf	0.1723	0.2112	0.2233	0.5624	1.0000						
Mark.inf	0.2142	0.2487	0.2307	0.5030	0.6134	1.0000					
Соор	0.2133	0.2659	0.2834	0.3866	0.4960	0.4916	1.0000				
Monopol	0.2744	0.2970	0.3632	0.2534	0.2632	0.3584	0.3489	1.0000			
Unc.dem	0.2967	0.2716	0.3752	0.2455	0.2617	0.3127	0.3753	0.5240	1.0000		
No dem	0.0821	0.0885	0.1022	0.1765	0.1389	0.2428	0.1757	0.1682	0.1987	1.0000	

Table A6. Matrix for the correlations of disturbances – obstacles to occasional innovators

(p=0.2071)(p=0.0209)(p=0.0030)

Prior	0.0933	0.1672	0.1409	0.2299	0.1098	0.2442	0.2431	0.2362	0.3034	0.4861	1.0000
innov.											

(p=0.0033)

All coefficients are significant on level 0.001 (p<0.001) expect (bara, barj) where p=0.2071, (bara, bark) where p=0.0033, ((barb, barj) where p=0.0209, (barc, barj) where p=0.0030.

REFERENCES

- Arundel A. (1997), Enterprise Strategies and Barriers to Innovation, in: A. Arundel and R.Garrelfs (eds.), "Innovation Measurement and Policies", Vol. 50, EIMS Publication European Commission, pp. 101–108.
- Athey S., Stern S. (1998), An Empirical Framework for Testing Theories about Complementarity in Organizational Design, NBER Working Paper.
- Baldwin J., Lin Z. (2002), Impediments to Advanced Technology Adoption for Canadian Manufacturers, "Research Policy" 31, pp. 1–18.
- Blanchard P., Huiban J.-P., Musolesi A., Sevestre P. (2010), Where There is a Will, There is a Way? Assessing the Impact of Obstacles to Innovation MICRO-DYN, "Working Paper", No. 04/10.
- Canijels M.C.J., Verspagen, B. (2001), *Barriers to Knowledge Spillovers and Regional Convergence in an Evolutionary Model*, "Journal of Evolutionary Economics", No. 11, pp. 307–329.
- Cassiman B., Veugelers R. (2002), *Complementarity in the Innovation Strategy: Internal R&D. External Technology Acquisition and Cooperation in R&D*, http://papers.ssrn. com/abstract=303562
- Clausen T., Verspagen B. (2008), Quantitative Analyses of Innovation Strategies in European Firms: Guidelines and Preliminary Results from Selected Countries, MICRODYN project, Deliverable D22.
- Damanpour F., Wischnevsky D.J. (2006), Research on Innovation in Organizations: Distinguishing Innovation-generating from Innovation-adopting Organizations, "Journal of Engineering and Technology Management", No. 23, pp. 269– -291.
- Daniel E.M., Grimshaw D.J. (2002), The Exploratory Comparison of Electronic Commerce Adoption in Large and Small Enterprises, "Journal of Information Technology", 17, pp. 133–147.
- D'Este P., Iammarino S., Savona M., von Tunzelmann N. (2009), *Revealed versus* Deterring Barriers to Innovation. Evidence from the 4th Community Innovation Survey (CIS4), DIUS Research Report 09–09.
- D'Este P., Iammarino S., Savona M., von Tunzelmann N. (2008), *What Hamper Innovation? Evidence from the UK CIS4*, SPRU Electronic Working Paper Series, No. 168.
- Fabrizio K.R. (2009), *Absorptive Capacity and the Search for Innovation*, "Research Policy", 38, pp. 255–267.
- Dosi G. (1988), *Sources, Procedures and Microeconomic Effects of Innovation*, "Journal of Economic Literature", 36, pp. 1126–1171.
- Galia F., Legros D. (2004), Complementarities between Barriers to Innovation: Evidence from France, "Research Policy", 33, pp.1185–1199.
- Hadjimanolis A. (1999), Barriers to Innovation for SME in a Small Less Developed Country (Cyprus), "Technovation", 19, pp. 561–570.
- Hall B.H. (2002), *The Financing of Research and Development*, "Oxford Review of Economic Policy", 18, pp. 35–51.
- Hyytinen A., Toivanen O. (2005), Do Financial Constraints Hold back Innovation and Growth? Evidence on the Role of Public Policy, "Research Policy", 34, pp. 1385–1403.

- Iammarino S., Sanna-Randaccio F., Savona M. (2007), The Perception of Barriers to Innovation. Multinational and Domestic Firms in Italy, BETA. Document de travail, no. 2007–12.
- Jensen M.B., Johnson R., Lorenz E., Lundvall B.A. (2007), Forms of Knowledge and Modes of Innovation, "Research Policy", 36, pp. 680–693.
- Jong de J.P.J., Marsili O. (2006), *The Fruit Flies of Innovations: A Taxonomy of Innovative Small Firms*, "Research Policy", 35, pp. 213–229.
- Kramer S.M.S. (2009), Drivers of National Innovation in Transition: Evidence from a Panel of Eastern European Countries, "Research Policy", 38, pp. 845–860.
- Leitao S.M., Mario J.R. (2007), Barriers to Innovation Faced by Manufacturing Firms in Portugal: How to Overcome it? MPRA Paper, No. 5408. November, Munich.
- Llerene P., Oltra V. (2002), *Diversity of Innovative Strategy as a Source of Technological Performance*, "Structural Change and Economic Dynamics", 13, pp. 179–201.
- Love J.H., Roper S. (2009), Organizing Innovation: Complementarities between Cross--functional Teams, "Technovation", 29, pp. 192–203.
- Manfield E. (1968), *Industrial Research and Technology Innovation*, W.W. Norton, New York.
- Mazzanti M., Mancinelli S. (2007), *SME Performance. Innovation and Networking Evidence on Complementarities for a Local Economic System*, Fondazione Eni Enrico Mattei, "Working Papers", No. 79.
- Mohnen P., Rosa J. (1999), *Barriers to Innovation in Services Industries in Canada*. Cat. No. 88F001-MIE99007, Statistics Canada, Ottawa.
- Mohnen P., Roller L.-H., (2005), *Complementarities in Innovation Policy*, "European Economic Review", 49, pp. 1431–1450.
- Mohnen P., Palm F.C., Schim van der Loeff S., Tirawi A. (2008), *Financial Constraints and Other Barriers: Are They a Threat to Innovation Activity?* CESifo Working Paper, No. 2204.
- OECD (2005), Oslo Manual, http://www.oecd.org/dataoecd/35/61/2367580.pdf
- Piech K., Radosevic S. (eds.), (2006), *The Knowledge-Based Economy in Central and East European Countries and Industries in a Process of Change*, Palgrave Macmillan.
- Pihkala T., Ylinenpaa H., Vesalainen J., (2002), *Innovation Barriers Among Clusters* of European SME, "International Journal of Entrepreneurship and Innovation Management", 2 (6), pp. 520–536.
- Polder M., van Leeuwen G., Mohnen P., Raymond W. (2010), Product. Process and Organization Innovation: Drivers. Complementarity and Productivity Effects, UNU-MERIT. UN University. Working Paper Series. 2010–035.
- Roper S., Du J., Love J.H. (2008), *Modelling the Innovation Value Chain*, "Research Policy", 37, pp. 961–977.
- Rothwell. R. (1989), *Small Firms. Innovation and Industrial Change*, "Small Business Economics", 6, pp. 327–247.
- Schmiedeberg C. (2008), Complementarities of Innovation Activities: An Empirical Analysis of the German Manufacturing Sector, "Research Policy", 37, pp. 1492– –1503.

- Silva M.J., Leitão J., Raposo M. (2008), Barriers to Innovation faced by Manufacturing firms in Portugal: How to Overcome it for Fostering Business Excellence? "International Journal of Business Excellence", 1 (1/2).
- Savignac F. (2007), The Impact of Financial Constraints on Innovation: What Can be Learned from a Direct Measure? Notes D'etudes et Recherche, NER – E # 169. Banque de France.
- Tourigny D., Lee C.D. (2004), *Impediments to Innovation face by Canadian Manufacturing Firms*, "Economics of Innovation and New Technology", 13 (3), pp. 217–250.
- Veugelers R., Cassima B. (1999), Make and Buy in Innovation Strategies: Evidence from Belgian Manufacturing Firms, "Research Policy", 28, pp. 63–80.
- Vossen R.W. (1998), Combining Small and Large Firm Advantages in Innovation: Theory and Examples, SOM Research Report.
- Wziątek-Kubiak A., Balcerowicz E., Pęczkowski M. (2009a), The Innovation Patterns of Firms in Low and High Technology Manufacturing Sectors in the New Member States, "WIIW Working Papers", 10/09.
- Wziątek-Kubiak A., Balcerowicz E., Pęczkowski M. (2009b), Differentiation of Innovation Behavior of Manufacturing Firms in the New Member States. Cluster Analysis on Firm-level Data, "WIIW Working Paper", 8/09.

ABSTRACT

This paper investigates barriers to innovation perceived by innovating firms and complementarities between such barriers. The study analyses two periods: 2002– -2004 and 2004-2006, covered by two Community Innovation Surveys (CIS): CIS4 and CIS5, respectively. We distinguish two groups of innovating firms those which introduced innovations in both CIS4 and CIS5, and those which introduced innovation in either CIS4 or CIS5. We label the former group persistent innovators, and the latter – occasional innovators. We use a multivariate (factor and cluster) analysis covering binary correlations, Principal Component Analysis, probit model and correlations of disturbances. Two types of explanatory variables describing firms' characteristics and innovation inputs used are considered. The paper shows that there are considerable differences in sensitivities to the perception of innovation barriers and in complementarities among barriers between persistent and occasional innovators. In the case of occasional innovators, a kind of innovation barrier chain is observed. This has an impact on differences in the frequency of innovation activities between the two groups of innovators and results in diversification of innovators.

Key words: Innovation of the firms; Barriers to innovation, Innovation sources; New Member States, Complementarity.

JEL Classification: O31, O32, O33, D21, D83

PODOBIEŃSTWA I RÓŻNICE W BARIERACH INNOWACJI I ICH KOMPLEMENTARNOŚCI W POLSKICH PRZEDSIĘBIORSTWACH WPROWADZAJĄCYCH INNOWACJE W SPOSÓB CIĄGŁY I OKRESOWO

STRESZCZENIE

W opracowaniu przedstawiono różnice w barierach innowacji między dwoma wyodrebnionymi przez nas grupami polskich przedsiębiorstw innowacyjnych działających w przemyśle przetwórczym. Pierwsza z nich to tzw. permanentni (stali) innowatorzy, czyli takie przedsiębiorstwa, które wprowadziły innowacje zarówno w latach 2002–2004 jak i w latach 2004–2006. Przedsiębiorstwa grupy drugiej, określane przez nas mianem okresowych innowatorów, wprowadziły innowacje tylko w jednych z dwóch wspomnianych okresów: albo w latach 2002--2004, albo w okresie 2004-2006. Wykorzystując dwie grupy zmiennych, opisujących cechy analizowanych firm i stosowane przez nie czynniki innowacji. w opracowaniu zastosowano analize czynnikowa i skupień (badanie korelacji, analize głównych składowych, model probitowy oraz korelacje reszt). Przeprowadzona analiza ekonometryczna pokazała znaczące różnice w percepcji barier innowacji i w komplementarności tych barier między dwoma grupami przedsiębiorstw innowacyjnych. Wpływały one na różnice w częstotliwości wprowadzania innowacji. W przypadku okresowych innowatorów zaobserwowano także łańcuch barier innowacji, którego istnienie potęgowało różnice w zachowaniach innowacyjnych tych przedsiębiorstw względem permanentnych innowatorów.

Słowa kluczowe: bariery innowacji, komplementarność barier innowacji, klasyfikacja polskich przedsiębiorstw innowacyjnych.